Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Environ Toxicol Chem ; 38(9): 1890-1901, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31108567

RESUMO

Baseline variations in trout-perch energy use (growth, gonad size) and energy storage (condition, liver size) were characterized between 2009 and 2015 in 8 reaches of the Athabasca River (AB, Canada), including 2 reaches upstream of the city of Fort McMurray (AB, Canada) and 6 reaches downstream of Fort McMurray among existing oil sands operations. Generalized linear models, used to account for background variation, indicated that fork length, gonad size, and liver size decreased, whereas body weight increased, in relation to river discharge, for both male and female trout-perch. Air temperature was positively correlated with liver size and negatively correlated with gonad size and body weight for females, but only positively correlated with gonad weight for males. These linear models explained approximately 20 to 25% of the variation in adjusted body size, and upward of 80% of the variation in adjusted body weight, liver weight, and gonad weight. Residuals from linear models were used to estimate normal ranges of variation for each of the fish population performance measures. Combined, the models and normal ranges can be used to assess subsequent monitoring data, providing potential triggers for follow-up monitoring activities. Environ Toxicol Chem 2019;38:0-0. Environ Toxicol Chem 2019;38:1890-1901. © 2019 SETAC.


Assuntos
Monitoramento Ambiental/métodos , Campos de Petróleo e Gás , Percas/crescimento & desenvolvimento , Rios/química , Truta/crescimento & desenvolvimento , Poluentes Químicos da Água/análise , Alberta , Animais , Clima , Feminino , Modelos Lineares , Masculino
3.
Sci Total Environ ; 659: 1224-1233, 2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-31096335

RESUMO

The surface mining of oil sands deposits requires the removal of groundwater to stabilize the deposit (depressurization) and make it safe for mining. The chemistry and toxicity of deep groundwaters (from 45 to 144 m below an active mining operation) were characterized to determine if the release of groundwaters would pose a risk to a receiving aquatic environment. Concentrations of conventional chemicals such as nutrients and metals were generally below CCME chronic guidelines. Concentrations of oil sands naphthenic acids (NAs) varied depending on the method of measurement and were routinely >1 mg L-1. Groundwaters rarely caused lethality to fish and invertebrates in standard acute and chronic toxicity tests. Algal cell production was negatively correlated with chlorides and potentially negatively with NAs. Other chronic toxicity variations were less obviously correlated with measured chemistry. The groundwaters had moderately-high oxygen demand (2 to 33 mg L-1), likely associated with nutrients and organic substances, and thus have the potential to enrich receiving surface water environments if left untreated and depending on the receiving environment. This paper presents for the first time a comprehensive (3 year) pairing of water chemistry and toxicity data on groundwaters collected from aquifer depressurization wells below an active oil sands operation. These data will contribute to a better understanding of the environmental risk these waters potentially pose, and ultimately, to the improvement of water management strategies and the reduction of the overall surface mining footprint of oil sands operations.


Assuntos
Monitoramento Ambiental , Água Subterrânea/química , Campos de Petróleo e Gás , Poluentes Químicos da Água/toxicidade , Ácidos Carboxílicos , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...